Sains Malaysiana 52(7)(2023):
2139-2148
http://doi.org/10.17576/jsm-2023-5207-19
A Comparison between Two
Discordancy Tests to Identify Outlier in Wrapped Normal (WN) Samples
(Perbandingan antara Dua Ujian Percanggahan untuk Mengenal Pasti Data Terpencil dalam Sampel Normal Balutan (WN))
NURISHA
MOHD ZULKEFLI1, ADZHAR RAMBLI 1,*, MOHAMAD ISMETH KHAN
AZHAR SUHAIMI1, IBRAHIM MOHAMED2 & RAIHA SHAZWEEN
REDZUAN3
1School of Mathematical Sciences, College of Computing, Informatics and
Mathematics,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Institute of Mathematical Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
3Centre for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur,
Malaysia
Received: 17 March 2023/Accepted: 6 July 2023
Abstract
This study focuses on comparing the performance of the Robust
Circular Distance (RCDU*) (simplified version) and A
statistics in detecting a single outlier in the Wrapped Normal (WN)
samples. Firstly, this study proposes a simplified version of RCDU statistic.
Then, the paper generates the cut-off points for both statistics taken from WN
samples via a simulation study. This study also evaluates the performance of
both statistics using the proportion of a correct outlier detection. As a
result, for a small sample size, the performance of RCDU* and A statistics do
not have a huge difference. However, for a large sample size of n=250, A
statistic performs slightly better than RCDU* statistic. As an illustration of
a practical example, both statistics successfully detected one outlier present
in the wind direction data at Kota Bharu station.
Keywords: Circular data; discordancy tests; outliers;
wrapped normal distribution
Abstrak
Kajian ini memfokuskan kepada perbandingan prestasi Jarak Berkeliling Teguh (RCDU*) (versi ringkas) dan statistik A dalam mengesan satu data terpencil dalam sampel Normal Balutan (WN). Pertama, kajian ini mencadangkan versi ringkas statistik RCDU. Kemudian, kertas itu menjana titik potong untuk kedua-dua statistik yang diambil daripada sampel WN melalui kajian simulasi. Kajian ini juga menilai prestasi kedua-dua statistik menggunakan perkadaran pengesanan data terpencil yang betul. Akibatnya, untuk saiz sampel yang kecil, prestasi RCDU* dan statistik A tidak mempunyai perbezaan yang besar. Walau bagaimanapun, untuk saiz sampel yang besar n=250, statistik A menunjukkan prestasi yang lebih baik sedikit daripada statistik RCDU*. Sebagai ilustrasi contoh praktikal, kedua-dua statistik berjaya mengesan satu data terpencil hadir dalam data arah angin di stesen Kota Bharu.
Kata kunci: Data pekeliling; data terpencil; taburan normal balutan; ujian percanggahan
REFERENCES
Abuzaid, A.H.,
Mohamed, I.B. & Hussin, A.G. 2009. A new test of
discordancy in circular data. Communications in Statistics: Simulation and
Computation 38(4): 793-809. https://doi.org/10.1080/03610910802627048
Collett, D. 1980.
Data in circular outliers. Journal of the Royal Statistical Society 29(1):
50-57.
Fisher, N.I.
1993. Statistical Analysis of Circular Data. Cambridge: Cambridge
University Press. https://doi.org/10.1017/CBO9780511564345
Hussin, A.G., Abuzaid, A.H., Ibrahim, A.N.I. & Rambli,
A. 2013. Detection of outliers in the complex linear regression model. Sains Malaysiana 42(6): 869-874.
Jammalamadaka, S.R. & SenGupta, A. 2001. Topics in Circular Statistics.
World Scientific.
Mahmood,
E.A., Rana, S., Midi, H. & Hussin, A.G. 2017.
Detection of outliers in univariate circular data using robust circular
distance. Journal of Modern Applied Statistical Methods 16(2): 418-438.
Mohamed, I.B., Rambli,
A., Khaliddin, N. & Hussin,
A.G. 2016. A new discordancy test in circular data using spacings theory. Communication in Statistics - Simulation and Computation 45(5):
2904-2916. https://doi.org/10.1080/03610918.2014.932799
Rambli, A., Ibrahim, S., Abdullah, M.I., Hussin,
A.G. & Mohamed, I. 2012. On discordance test for the wrapped normal data. Sains Malaysiana 41(6): 769-778.
*Corresponding author; email: adzhar@uitm.edu.my
|